DNA and genetic information

- DNA carries plans for the primary structure of nucleic acids (DNA, RNA) and proteins.
- DNA of single cell has capacity over 1 million pages of text (900 copies of our textbook!)
- however, only about 1% of DNA ever gets translated into proteins- equivalent to about 1 large book.

DNA is not all the information necessary in an organism (consider "Jurassic Park")

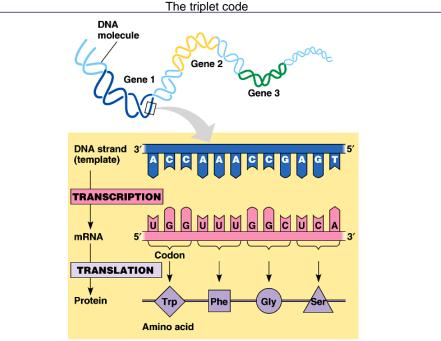
Information in binary computers

- two basic symbols :1 or 0 ("bits")
- physical form of bits varies with medium
- 8 bit words = bytes (e.g 10110111)
- $2^8 = 256$ unique bytes are possible
- This is a large enough set of symbols to represent characters in language

Information in binary computers

- ASCII code- American Standard Code for Information Interchange
- Each byte was assigned to a particular symbol (letter, numeral, etc.)
- Therefore, series of bytes can represent English sentences, math equations, etc.

Hierarchies of symbols


<u>English</u>	<u>computer</u>	<u>genetics</u>
letter (26)	bit (2)	nucleotide (4)
word (1-28 letters)	byte (8 bits)	codon (3 nucleotides)
sentence	line	gene
book	program	genome

Information in organisms

- DNA and RNA- polymers of nucleotides
- 4 letter alphabet = 4 kinds of nucleotides <u>DNA</u>: A, T, G, C <u>RNA</u>: A, U, G, C
- sequence of nucleotides in a gene specifies the sequence of amino acids in a protein.

Genetic code

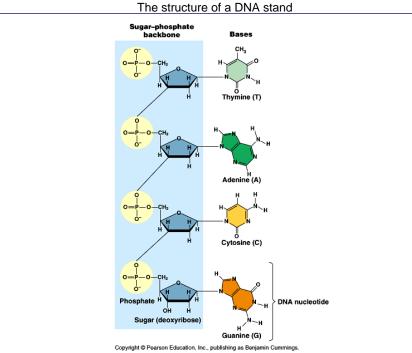
- "words" (codons or triplets) are 3 letters long in genetic code
- each group of 3 nucleotides corresponds to one amino acid.
- A nucleotide sequence (sequence of codons) can be "translated" into an amino acid sequence, i.e., a peptide or protein

Genetic code

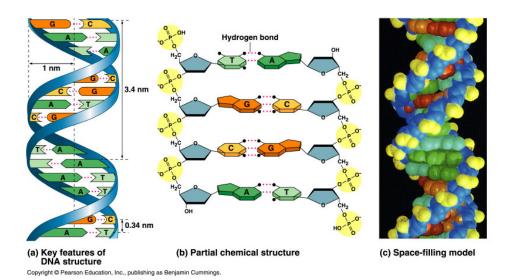
- the <u>Genetic Code</u> is the correspondence between triplets and amino acids
- deciphered in early 60's by Marshall Nirenberg
- He used synthetic polynucleotides and a cell-free translation system (e.g. poly-A gave poly-phenylalanine)

		Second base					
	_	U	С	Α	G		
First base (5' end)	υ	UUU UUC UUA	UCU UCC UCA	UAU UAC Tyr UAA Stop	UGU UGC UGA Stop	U C A	
	с	UUG CUU CUC CUA CUG	UCG CCU CCC CCA CCG	UAG Stop CAU CAC His CAA CAA Gln	UGG Trp CGU CGC CGA CGG	G U C A G	3' end)
	A	AUU AUC AUA AUG Met or start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	U C A G	Third base
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G	

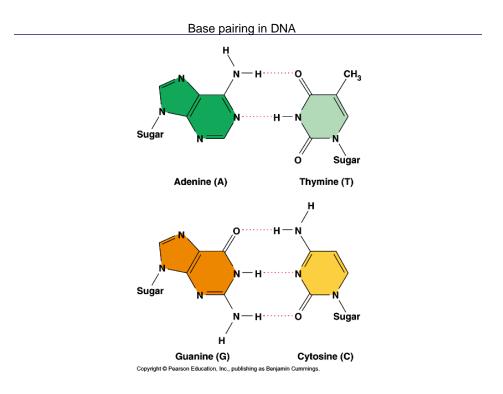
The dictionary of the genetic code

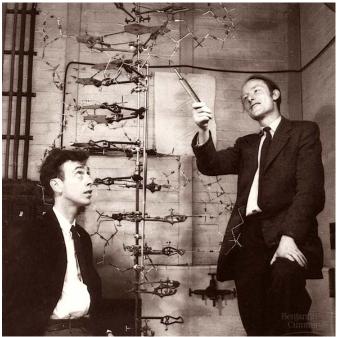

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

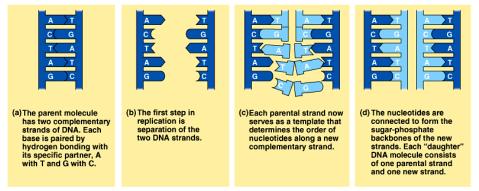
The genetic code is universal


- This fact indicates a single origin for all living things.
- A human gene placed in a bacterium or yeast cell can yield the same protein.
- Biotechnology

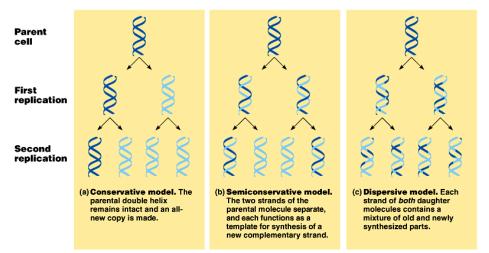
Genetic information undergoes 3 processes:


- <u>Replication</u> to copy the DNA for cell reproduction
- <u>Transcription</u> of genes into messenger RNA molecules for translation by ribosomes
- <u>Translation</u> of mRNA by ribosomes into protein

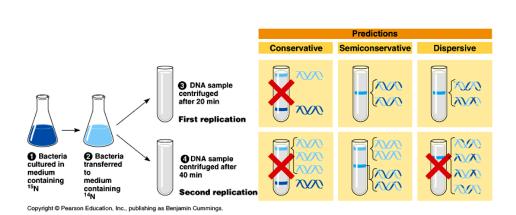

The double helix


7

James Watson and Francis Crick 1953

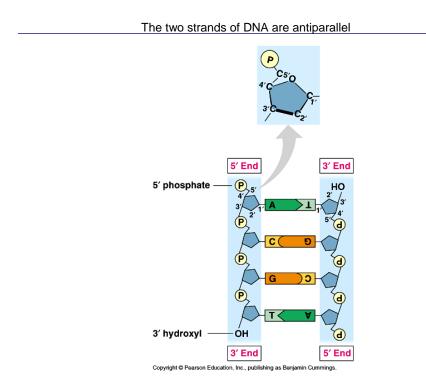


A model for DNA replication: the basic concept

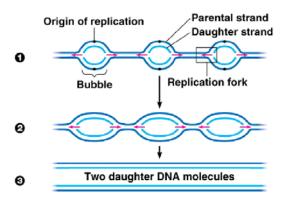


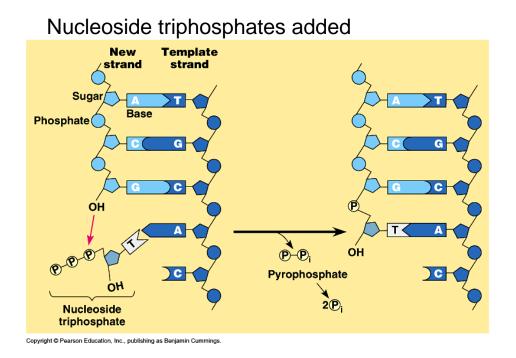
Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Three alternative models of DNA replication

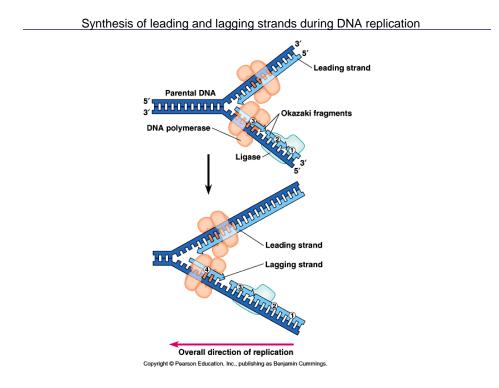

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

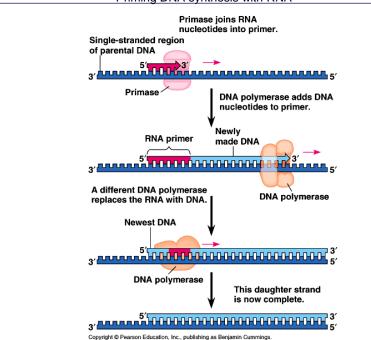
The Meselson-Stahl experiment tested three models of DNA replication (1958)

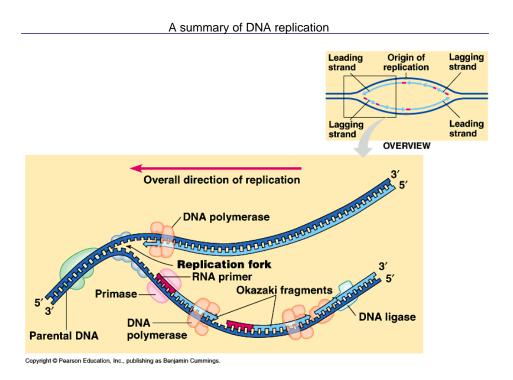

Structure of DNA


- Base pairing
- Complementary strands
- 5' and 3' ends, antiparallel
- Leading and lagging strands
- Template and complementary strands (=sense and antisense)

Replication

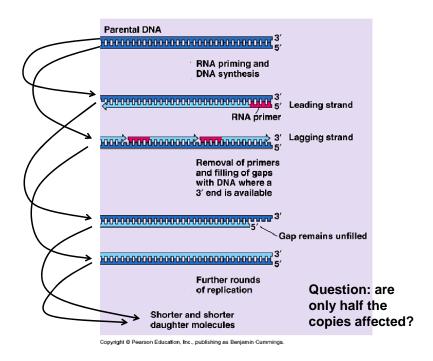

• Replication "origins" and "bubbles" -single in prokaryotes, multiple in eukaryotes



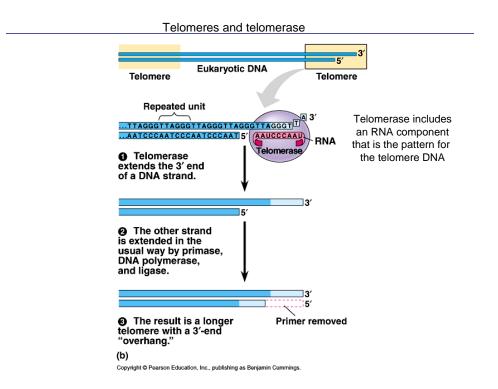

Replication

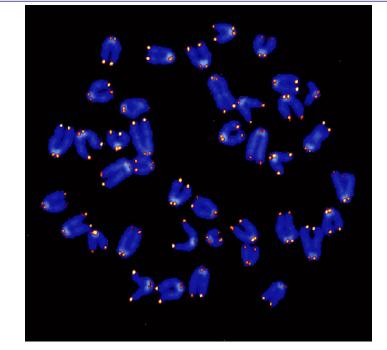
- DNA synthesis always starts with RNA primer (10 bases) laid first, later replaced with DNA
- Leading strand is continuous
- Lagging strand is discontinuous, in Okasaki fragments (100-200 bases long)
- Ligase joins the fragments




Priming DNA synthesis with RNA

The end-replication problem




Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

End-replication & telomeres

- DNA polymerase can't finish the 5' ends
- DNA would get 10 bases shorter each time replicated
- <u>Telomeres</u> are "expendable" repetitive (TTAGGG) sequences at end of chromosomes
- <u>Telomerase</u> restores telomers, present in germ-line cells and cancerous cells

Telomeres and telomerase: Telomeres of mouse chromosomes