- Wage elasticity of the demand for labor = η_w
 - What is the impact of the minimum wage on labor markets?
 - Recall that if the market is competitive then the wage increases, employment falls, and unemployment is created.
 - But how <u>much</u> does employment fall? Answering this question is the whole point of the wage elasticity of the demand for labor.
 - Definitions
 - η_w = how responsive is the demand for labor to changes in wages.

•
$$\eta = \frac{\%\Delta L}{\%\Delta W}$$

- What do we know about price elasticities and, hence, $\eta_w?$
 - $\eta_w < 0$. Why? Make sure you know.
 - If $|\eta_w| > 1 \Rightarrow |\%\Delta L| > |\%\Delta W| \Rightarrow$ labor demand is wage <u>elastic</u>
 - If $|\eta_w| < 1 \Rightarrow |\%\Delta L| < |\%\Delta W| \Rightarrow$ labor demand is wage <u>inelastic</u>
 - If $|\eta_w| = 1 \Rightarrow |\%\Delta L| = |\%\Delta W| \Rightarrow$ labor demand is <u>unitary</u>
 - What do all of these mean?
 - What is η_w along a linear downward sloping demand curve?
- What makes a demand for labor relatively more or less elastic?
 - What do we mean by relatively more or less elastic? Show it graphically.
 - Four Hicks Marshall Laws of Derived Demand
 - Recall the two effects that occur when wage changes discussed in Labor demand material. The four laws relate to these two effects.
 - Scale effect w ↑ => costs of production ↑ => S of the good produced by labor ↓ => output produced ↓ => inputs used to produce the output ↓ => D_L ↓
 - Substitution effect w $\uparrow =>$ labor becomes more costly than its substitutes $=> D_L \downarrow$ as the firm substitutes other inputs for it.
 - 1. $\eta_w \uparrow (\downarrow)$ as the price elasticity of the demand for the product labor produces $\uparrow (\downarrow)$. Why? What are the implications?
 - 2. $\eta_w \uparrow$ as it becomes easier to substitute other inputs for labor. Why? What are the implications?
 - 3. $\eta_w \uparrow$ as the price elasticity of supply for other inputs \uparrow . Why? What are the implications?
 - 4. $\eta_w \uparrow$ as the cost of labor as a share of total costs \uparrow . Why? Is this law always true?
- Empirical estimates of η_w.
 - See Table 4.1 page 103 in the textbook

- What do the numbers mean?
- You should know the general results without memorizing the numbers explicitly.
- Application Unions
 - What do unions want? At least three possible goals.
 - 1. Increased income and power for union officials
 - 2. Increased wages for union members
 - 3. Increased union employment
 - The last two may cause the first goal to be met.
 - D/S theory says that 2 and 3 are mutually exclusive.
 - Why?
 - What if demand for labor is relatively inelastic => the tradeoff between wages and employment is not as severe. Why? Show it on a graph.
 - What can the union do to affect $(\downarrow) \eta_w$ make demand labor less elastic?
 - Government policies the union might support?
 - Long term labor contracts
 - Other implications
 - As $\eta_w \downarrow \Rightarrow$ union wages \uparrow , ceteris paribus, and the reverse.
 - Union labor organizers would tend to find labor markets with low η_w (highly inelastic D_L) more desirable.
- Cross wage elasticity of the demand for labor.
 - Definitions
 - Demand for labor is affected by wages for other types of labor. Suppose two types of labor j and k. Then the cross wage elasticity for these two types of labor (η_{JK} or η_{KJ}) equals how responsive demand for one type of labor is to changes in the wage of the other type.

•
$$\eta_{JK} = \frac{\%\Delta L_J}{\%\Delta W_K}$$

•
$$\eta_{KJ} = \frac{\%\Delta L_K}{\%\Delta W_J}$$

- What does the cross wage elasticity tell us? What does the number mean?
 - If we observe that $\eta_{JK} > 0 \Rightarrow$ when W_K increases then L_J also increases (and the reverse) $\Rightarrow J$ and K are gross substitutes. Why?
 - If we observe that $\eta_{JK} < 0 \Rightarrow$ when W_K increases then L_J decreases (and the reverse) $\Rightarrow J$ and K are gross complements. Why?
 - Recall the scale and substitution effect, but now as related to cross wage elasticities:

- Scale effect $W_K \uparrow =>$ costs of production $\uparrow =>$ S of the good produced by labor $\downarrow =>$ output produced $\downarrow =>$ inputs used to produce the output $\downarrow => L_K \downarrow \text{ and } L_J \downarrow$
- Substitution effect $W_K \uparrow => L_K$ becomes more costly than its substitute, $L_J =>$ Firm substitutes L_J for $L_K => L_K \downarrow$ while $L_J \uparrow$.
- Therefore two ways to observe gross complements ($\eta_{JK} < 0$).
 - Jand K are actual substitutes but the substitution effect of an increase in W_K , which causes L_J to increase, is outweighed by the scale effect of an increase in the W_K , which causes L_J to decrease => overall we observe that as W_K increases then L_J decreases even though the two types of labor are actually substitutes.
 - J and K are actual complements. In this case there is no substitution effect. Thus, the scale effect of an increase in W_K causes L_J to decrease.
- Only observe that J and K are gross substitutes if (1) J and K are <u>actual</u> substitutes and (2) the substitution effect outweighs the scale effect.
- The above tells us that cross wage elasticities are determined by:
 - 1. Whether the two inputs are actual complements or actual substitutes and,
 - 2. The relative size of the substitute and scale effects. The relative sizes are affected by the 4 Hicks/Marshall laws discussed in the previous section.
 - Consider what affects the size of the scale effect (assume that the two types of labor are union and non-union labor.) As the scale effect increases, ceteris paribus, union and non-union labor are more likely to be gross complements (what does the union want?).
 - 1. The union share of total costs. As this increases, the scale effect is larger (why?)
 - 2. The price elasticity of demand for the good that is being produced. As this increases, the scale effect is larger (why?).
 - Consider what affects the size of the substitution effect. As the substitution effect increase, ceteris paribus, union and non-union labor are less likely to be gross complements (what does the union want?).
 - 1. How easy is it to substitute non-union for union labor? As it becomes easier, the substitution effect is larger. How might unions affect this?
 - 2. How price elastic is the supply of non-union labor? As it becomes more elastic the substitution effect is larger (why?) Can unions affect this?
- Why do we care about cross wage elasticities?
 - How does public policy depend upon cross wage elasticities?
 - Empirical Findings
 - 1. labor and energy are gross and actual substitutes (highly inelastic)
 - 2. labor and materials are gross and actual substitutes (again, highly inelastic)
 - 3. skilled and unskilled labor probably substitutes
 - 4. Not sure if either skilled or unskilled labor is substitute or complement to capital.
 - 5. Skilled labor is more likely to be complement to capital than unskilled labor. (Why does this matter?)

- Should we have a minimum wage? Public policy analysis of the impacts of minimum wage laws.
 - Empirical summary of facts presented in class/book
 - Theory what happens to employment with an increase in the wage (minimum wage)?
 - L decreases (law of demand)
 - What does this impact have to do with elasticity? Focus on total wage income $w^{*}L = I$
 - If $|\eta_W| > 1$ (labor demand is wage elastic) => $|\%\Delta L| > |\%\Delta w| =>$ as $w \uparrow I \downarrow$ (make sure you understand why)
 - If $|\eta_W| < 1$ (labor demand is wage inelastic) => $|\%\Delta L| < |\%\Delta w| =>$ as $w \uparrow I \uparrow$ (make sure you understand why)
 - Therefore the wage elasticity of the demand for labor speaks to effectiveness of the minimum wage law in making labor better off because of the increased minimum wage.
 - Complications of the analysis
 - This is nominal D_L and nominal wage => inflation can mitigate employment losses (see Fig 4.3 in book)
 - Statistics as $w \uparrow L \downarrow \underline{only}$ if other factors affecting employment are held constant (why is this a problem?)
 - The uncovered sector in minimum wage laws
 - What is the uncovered sector? (What percent of jobs are covered by minimum wage laws?)
 - Assume the following:
 - 1. 2 labor markets (sectors) covered and uncovered
 - 2. total employment in both is fixed but workers can move between them (the two markets are substitutes)
 - 3. without a minimum wage the same wage prevails in both markets (really one market)
 - Results = ? You should know the graphs we used in class to analyze the results and what happens to the following variables:
 - 1. wages and employment in the covered sector
 - 2. S_L for the uncovered sector
 - 3. wages and employment for the uncovered sector
 - Conclusions What impact does an uncovered sector have ultimately on the conclusion that minimum wage lowers employment and raises wages?
 - Empirical evidence regarding the impact of minimum wage laws
 - What is the evidence regarding the impact on wages and employment when first enacted in the 1930s?

- After 1930s, there is little consensus on the impact of a minimum wage on employment for unskilled labor. However evidence does indicate that η is probably smaller in absolute value for mandated wage changes like the minimum wage than for market based wage changes => evidence of monopsony power in labor markets (why?)
- Does increasing the minimum wage reduce poverty?
 - Recall that if demand for labor is inelastic, as found => as the minimum wage increases => total wage income (I) increases => should reduce poverty (shouldn't it?)
 - What is poverty? Defined by <u>household</u> not individual income. Below a set household income level, households are considered to be in poverty.
 - What is the empirical evidence? As the minimum wage increased (in 1990-1991) found that:
 - Only 22% of those individuals affected by the increase in the minimum wage (make sure you know what this means) lived in poverty.
 - Of households in poverty only 26% were affected by the increased minimum wage (why so few?)