Review Notes – Cost Minimization and Cost Curves

- Cost Minimization
 - The cost function
 - Costs come from profit maximization. How?
 1. Problem is to minimize costs = wL + rK subject to Y = f(L,K).
 - Graphically
 - Use equation 1 above, which implies must use isoquants.
 - Define isocost curve = combinations of L and K such that costs are constant.
 - What are the intercepts on isocost curve?
 - What is the slope of the isocost curve?
 - How many isocost curves are there?
 - Minimizing Costs graphically and mathematically
 - Again, requires a tangency between two curves => slopes are equal.
 - Or MP_L/MP_K = w/r or MP_L/w = MP_K/r – do these look familiar?
 - Derive the conditional factor demand curves or the derived factor demand curves from this requirement.
 - K* = f(Y*,w,r); L* = f(Y*,w,r).
 - How do K* and L* change as Y*, w, and r change?
- Revealed Cost Minimization
 - What’s that?
 - Definition/equations – WACM – Weak Axiom of Cost Minimization
 - Implications of WACM with respect to:
 - Firm Demand for the inputs
- Returns to Scale and Cost Minimization
 - Increasing returns to scale => what happens to LRAC as output increases? => Economies of Scale
 - Decreasing returns to scale => what happens to LRAC as output increases? => Diseconomies of Scale
 - Constant returns to scale => what happens to LRAC as output increases?
 - Graphically
- Short-run Cost Minimization
 - Assume L is variable and K fixed => K* = fixed K; L* = f(fixed K, Y*, L)
 - Note that cost curves in short-run are also defined with K fixed

- Cost Curves
 - Short-run Cost Curves
 - Define total costs: C(Y) = C_s(Y) + F or TC = TVC + TFC.
 - What do the cost curves look like graphically?
• Define average costs: $AC(Y) = \frac{C_v(Y)}{Y}$; $AVC(Y) = \frac{C_v(Y)}{Y}$; $AFC(Y) = \frac{F}{Y}$ or $AC(Y) = AVC(Y) + AFC(Y)$.
 • What do the cost curves look like graphically?
• Define marginal costs: $MC(Y) = \frac{\Delta C(Y)}{\Delta Y} = \frac{\Delta C_v(Y)}{\Delta Y}$. Why?
• What is the relationship between the cost curves graphically and mathematically?

Long-run Cost Curves

• Important points
 1. All inputs are variable \Rightarrow costs associated with different plant sizes or scale of operations.
 2. Once K is chosen in the long-run \Rightarrow K becomes fixed in the short-run \Rightarrow K is not chosen optimally in the short-run.

• What is the relationship between short-run AC curves and long-run AC curves?
 • You should know this graphically and mathematically.
 • For a given Y \Rightarrow if K is chosen optimally in s-r and l-r \Rightarrow $AC_{sr} = AC_{lr}$
 • However, if in s-r move away from this Y \Rightarrow K is not chosen optimally and \Rightarrow $AC_{sr} > AC_{lr}$ \Rightarrow LRAC is the lower envelope of all SRAC curves.
 • What does this look like graphically?