Quicksort Running Time

https://courses.missouristate.edu/anthonyclark/325
Outline

Topics and Learning Objectives
• Learn how quicksort works
• Learn how to partition an array

Assessments
• Running time activity
Extra Resources

• https://me.dt.in.th/page/Quicksort/
• https://www.youtube.com/watch?v=ywWBy6J5gz8
• CLRS Chapter 7
Choosing a Pivot

What is Quicksort’s running time? (can we use master theorem?)
• It depends on the pivot

What is the worst case for Quicksort, and what is its running time?
• Always select the smallest (or largest) possible pivot and it takes $O(n^2)$
• Think of a one-sided tree

What is the best case for Quicksort, and what is its running time?
• Always select the median element as a pivot leading to $O(n \lg n)$
• Think of a balanced tree
Recursion tree for the best and worst cases of Quicksort

Height of tree?
\((\log n + 1)\)

Height of tree?
\(O(n^2)\)
Let’s assume the cost of Partition is 5m

Recursion tree for the best and worst cases of Quicksort

\[T(n) = 180 \]

\[T(n) = 105 \]
How would you select a pivot?

• If pivot selection is so important, how should we do it?

• Shouldn’t we take great care in selecting the pivot?

• Key idea for Quicksort: select the pivot uniformly at random!
 • Easy
 • Fast
 • Gets good results as long as the pivots are “decent” fairly “often”
Random Pivots

• Some foreshadowing:

If the randomly chosen pivot is close to the median (in the middle 25-75 % range) we will get an average running time of $O(n \lg n)$

• We cannot use the master theorem

$$T(n) = T(n-x) + T(x) + \Theta(n)$$

• We are going to show the runtime of quicksort another way
Quicksort Theory

For every input of the array of length n, the average running time of quicksort with random pivots is \(O(n \lg n) \).

This is a big deal; it means that the average running time is closer to the best-case than it is to the worst-case.

Note: here, average refers to the algorithm itself—it does not depend on the input.

• If we re-run quicksort on the same input we will get different pivots each time, and we are talking about the average running time of quicksort for these different sequences of pivots on the same input array.
Quicksort

FUNCTION QuickSort(array, left_index, right_index)

1. \(\text{IF } (\text{left_index} + 1) \geq \text{right_index} \)
 - \(\text{RETURN} \)
2. \(\text{MovePivotToLeft(left_index, right_index)} \)
3. pivot_index = Partition(array, left_index, right_index)
4. QuickSort(array, left_index, pivot_index)
5. QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

1. pivot_value = array[left_index]
2. \(i = \text{left_index} + 1 \)
3. \(\text{FOR } j \in [\text{left_index} + 1 ..< \text{right_index}] \)
 - \(\text{IF } \text{array}[j] < \text{pivot_value} \)
 - \(\text{swap(array, i, j)} \)
 - \(i = i + 1 \)
4. \(\text{swap(array, left_index, i - 1)} \)
5. \(\text{RETURN } i - 1 \)

We are going to count the number of comparisons performed inside the for-loop.

Most of the work is done inside Partition.
Some notation

Let $Z_i = i^{th}$ smallest element of A (not the i^{th} element)
What is Z_1?

<table>
<thead>
<tr>
<th>Z</th>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>51</td>
<td>43</td>
<td>17</td>
<td>83</td>
<td>79</td>
<td>23</td>
<td>61</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>
What is Z_2?

<table>
<thead>
<tr>
<th>Z</th>
<th>Z_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
</tr>
<tr>
<td>Value</td>
<td>51</td>
</tr>
</tbody>
</table>
\(Z_i\)

<table>
<thead>
<tr>
<th>(Z)</th>
<th>(Z_1)</th>
<th>(Z_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Value</td>
<td>51</td>
<td>43</td>
</tr>
</tbody>
</table>
The random variable for the number of times we compare Z_2 and Z_4 is:

$$X_{ij} = X_{24}$$

<table>
<thead>
<tr>
<th>Z</th>
<th>Z_5</th>
<th>Z_4</th>
<th>Z_1</th>
<th>Z_8</th>
<th>Z_7</th>
<th>Z_2</th>
<th>Z_6</th>
<th>Z_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Value</td>
<td>51</td>
<td>43</td>
<td>17</td>
<td>83</td>
<td>79</td>
<td>23</td>
<td>61</td>
<td>37</td>
</tr>
</tbody>
</table>
Some notation

Let $Z_i = i^{th}$ smallest element of A (not the i^{th} element)

Let X_{ij} be a random variable for the number of times Z_i and Z_j get compared during a call to Quicksort

i and j can be anything

How many times can Z_i and Z_j possibly be compared?
Activity
Some notation

Let $Z_i = i^{th}$ smallest element of A \textbf{(not the i^{th} element)}

Let X_{ij} be a random variable for the number of times Z_i and Z_j get compared during a call to Quicksort

How many times can Z_i and Z_j possibly be compared?

• Can only be compared 0 or 1 times!
• Every comparison involves the pivot, but the pivot is excluded from recursive calls.
FUNCTION QuickSort(array, left_index, right_index)

IF (left_index + 1) ≥ right_index
 RETURN

MovePivotToLeft(left_index, right_index)

pivot_index = Partition(array, left_index, right_index)

QuickSort(array, left_index, pivot_index)
QuickSort(array, pivot_index + 1, right_index)

FUNCTION Partition(array, left_index, right_index)

pivot_value = array[left_index]

i = left_index + 1
FOR j IN [left_index + 1 ..< right_index]
 IF array[j] < pivot_value
 swap(array, i, j)
 i = i + 1

swap(array, left_index, i - 1)
RETURN i - 1

The upper index is exclusive
right_index is not included in comparisons
Considering X_{ij}

- Space of all possible outcomes is Ω
 - A comparison happens (1)
 - Or it doesn’t (0)
 - This is an indicator variable

- What is the expected value of X ($E[X]$)?
 - We need to know the probability of a comparison

$$Pr(X_{ij} = 1)$$

Probability that we compare z_i and z_j
Probability that Z_i, Z_j get compared

Consider any $Z_i, Z_{i+1}, \ldots, Z_{j-1}, Z_j$ from the array

- Remember that these are not contiguous in the array, they are a numbers in increasing order

What can you tell me about this group of numbers? (Hint: consider different values for the pivot element)

If none of these are chosen as a pivot, all are passed to the same recursive call.
What is the probability that \(Z_3 \) (37) and \(Z_7 \) (79) are compared?
Probability that Z_i, Z_j get compared

Consider any $Z_i, Z_{i+1}, \ldots, Z_{j-1}, Z_j$ from the array

Among these values, consider the first one that gets chosen
1. If Z_i or Z_j are chosen first, then Z_i and Z_j are compared.
2. If one of Z_{i+1}, \ldots, Z_{j-1} is chosen, then Z_i and Z_j are NEVER compared.

Why?
1. If is chosen, then they become a pivot and the two values get compared
2. If a value in the middle gets chosen, then they go to separate calls
Probability that Z_i, Z_j get compared

$$\Pr(X_{ij} = 1) = \frac{2}{\text{total # of choices}} = \frac{2}{j - i + 1}$$

- What does this mean for two values that are close to each other?
- What does this mean for two values that are far from each other?
Counting the total number of comparisons

What is total number of comparisons?

\[
X_{\text{total}} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}
\]

Every possible comparison

\[
E[X_{\text{total}}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

Linearity of expectations
Counting the total number of comparisons

\[E[X_{total}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

\[E[X_{total}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(X_{ij} = 1) \cdot 1 + \Pr(X_{ij} = 0) \cdot 0 \]
Counting the total number of comparisons

\[
E[X_{total}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

\[
E[X_{total}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(X_{ij} = 1) \cdot 1 + \Pr(X_{ij} = 0) \cdot 0
\]
Counting the total number of comparisons

$$\Pr(X_{ij} = 1) = \frac{2}{\text{total # of choices}} = \frac{2}{j - i + 1}$$

$$E[X_{total}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(X_{ij} = 1) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}$$
Simplifying the Inner Summation

Consider a fixed value for \(i \) (\(i=1 \))

\[
\sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{j=2}^{n} \frac{2}{j} = 2 \cdot \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1+1} \right)
\]

Consider another fixed value for \(i \) (\(i=5 \))

\[
\sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{j=6}^{n} \frac{2}{j-4} = 2 \cdot \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-5+1} \right)
\]
Counting the total number of comparisons

\[
\text{Pr}(X_{ij} = 1) = \frac{2}{\text{total # of choices}} = \frac{2}{j - i + 1}
\]

\[
E[X_{\text{total}}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \text{Pr}(X_{ij} = 1) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}
\]

\[
E[X_{\text{total}}] \leq 2 \sum_{i=1}^{n-1} \sum_{j=2}^{n} \frac{1}{j - 1 + 1}
\]

Simplify by turning this into an inequality and taking the value for \(i \) that results in the biggest number.

Summations no longer depends on \(i \).
Counting the total number of comparisons

\[
E[X_{total}] \leq 2 \sum_{i=1}^{n-1} \sum_{j=2}^{n} \frac{1}{j - 1 + 1}
\]

Summations no longer depends on \(i\)

\[
E[X_{total}] \leq 2n \sum_{j=2}^{n} \frac{1}{j}
\]

Change of base for logarithms

\[
E[X_{total}] \leq 2n \int_{1}^{n} \frac{1}{x} dx = 2n \ln(x) \bigg|_{1}^{n} = 2n(\ln(n) - \ln(1)) = 2n \ln(n) = O(n \lg(n))
\]
Summary

\[E[X_{\text{total}}] \leq O(n \lg(n)) \]

• The expected number of comparisons is \(O(n \lg n) \)

• The expected number of comparisons is directly proportional to the total running time of Quicksort

• The asymptotic running time of Quicksort of \(O(n \lg n) \)