CROSS-RESISTANCE OF LARGEMOUTH BASS TO GLOCHIDIA OF UNIONID MUSSELS

Benjamin J. Dodd*, M. Christopher Barnhart‡, Constance L. Rogers-Lowery‡, Todd B. Fobian, and Ronald V. Dimock Jr‡

Department of Biology, Missouri State University, Springfield, Missouri 65804. e-mail: chrisbarnhart@missouristate.edu

ABSTRACT: We tested whether host fish that acquired resistance to glochidia of one mussel species were cross-resistant to glochidia of other species. Largemouth bass (Micropterus salmoides) were primed with 4–5 successive infections of glochidia of Lampsilis reeveiana. The percentage of attached glochidia that survived and transformed to the juvenile stage (transformation success) was compared between primed fish and naïve controls. Transformation success of L. reeveiana, Lampsis abrupta, Villosa iris, and Utterbackia imbecillis was significantly lower on primed fish (37.8%, 43.5%, 67.0%, and 13.2%, respectively) than on control fish (89.0%, 89.7%, 90.0%, and 22.2% respectively). Immunoblotting was used to analyze the binding of serum antibodies from primed fish with glochidia proteins. Antibodies bound to glochidia proteins of similar molecular weight from L. reeveiana and L. abrupta. Bound proteins of V. iris differed in molecular weight from those of the Lampsis species. There was no binding to specific glochidia proteins of U. imbecillis or Soprophitus undulatus. Our results indicate that host-acquired resistance can extend across mussel genera and subfamilies and might involve both specific and nonspecific mechanisms. Understanding the specificity of acquired resistance of hosts to glochidia could enhance understanding of the evolutionary and ecological relationships between mussels and their host fishes.

Freshwater unionid mussels have an obligate, parasitic larval stage, the glochidium, which typically attaches to the gills or fins of a host fish. Glochidia that attach to a compatible host species are encysted by migration of host cells. The larvae remain encysted for days to months, depending on species and temperature, and transform to the juvenile stage. When development is complete, the juveniles leave the host and become benthic suspension feeders (Are, 1921, 1932a; Fustish and Millemann, 1978; Waller and Mitchell, 1989).

Mussels are host specific and are generally compatible with only a limited number of host species (Watters, 1994). Glochidia that attach to incompatible (nonhost) species are lost from the host within a few days after attachment because they either fail to be encysted or are subsequently sloughed from the host before transformation is complete. Incompatibility is thought to be innate, but the mechanisms involved are unknown (Reuling, 1919; Are, 1932a; Meyers and Millemann, 1977; Meyers et al., 1980; Young and Williams, 1984b; O’Connell and Neves, 1999).

In addition to innate resistance, several studies have shown that compatible hosts acquire resistance to glochidia after one or more infections (Reuling, 1919; Are, 1924, 1932a; Bauer and Vogel, 1987; Rogers and Dimock, 2003). Compared to naïve hosts, resistant host fish kill and slough a larger number of the attached glochidia, thus reducing the proportion that transform into juveniles (Bauer and Vogel, 1987; Rogers and Dimock, 2003). The underlying mechanisms of acquired resistance of host fish to glochidia are not fully understood. Fish infected with glochidia produce anti-glochidia factors in their serum, presumably antibodies (Meyers et al., 1980; Bauer and Vogel, 1987; O’Connell and Neves, 1999). However, the relationship between serum antibody levels and resistance has not been investigated.

Acquired resistance of fish to one species of parasite can result in resistance to other species (cross-resistance) (Buchmann et al., 1999; Larsen et al., 2002). Cross-resistance to glochidia of different mussel species has been documented, but little information is available (Reuling, 1919; Shiver, 2002). Further understanding of acquired resistance and cross-resistance could have practical application in efforts to understand mussel host relationships and to propagate endangered species. Captive propagation of mussels on host fish is increasingly used in efforts to conserve rare species of mussels and is an objective in many federal recovery plans (NNMCC, 1998). Propagating multiple species on the same host fish could be used to reduce labor and costs associated with collecting and maintaining hosts.

The main goals of this study were to determine whether host fish that have acquired resistance to one mussel species are cross-resistant to other mussel species, and whether serum antibodies from fishes primed with glochidia from one species of mussel would cross-react with glochidia proteins of different species.

MATERIALS AND METHODS

Fish and mussels

Six-month-old largemouth bass were obtained from Chesapeake State Fish Hatchery, Chesapeake, Missouri. Fish were held in a recirculating aquarium system at 22–23°C in moderately hard synthetic freshwater (SFW) (USEPA, 2002). We fed fishes 1–2% of their body weight daily (AquaMax pellet feed, Purina Mills, St. Louis, Missouri), except during infections, when they were fed every other day to reduce feces production. The body mass (g) of each fish was measured following each infection.

Gravid mussels were collected from Missouri and North Carolina during 2003 and 2004. We collected Ozark broken rays mussels (Lampsilis reeveiana brevicula, hereafter referred to as L. reeveiana), rainbow mussels (Villosa iris), and creeper (Soprophitus undulatus) from Beaver Creek, Taney County, Missouri (UTM 15, 503804E, 4066693N). Pink muckets (Lampsilis abrupta) were collected from the Meramec River, Jefferson County, Missouri (UTM 15, 699328E, 4260349N). Paper pondshell (Utterbackia imbecillis) were collected from Lake Rockingham, Rockingham County, North Carolina (UTM 17, 625142E, 4026086N). Lampsis reeveiana and V. iris were maintained at 19–21°C. Utterbackia imbecillis were kept at 10°C, and S. undulatus were kept at 6.5°C to slow the release of glochidia. Lampsis reeveiana, V. iris, and S. undulatus were maintained unfed in SFW. Lampsis abrupta were kept in a flow-through raceway that received water from a pond at Chesapeake State Fish Hatchery. Utterbackia imbecillis were fed once or twice per wk with a mixture of algae, and maintained in SFW. Mus-
We used glochidia from 1 female mussel per infection, and obtained glochidia from a different female mussel for each infection. We used a needle and syringe to perforate the marsupial gill and flush the glochidia into a beaker. The glochidia of S. ambiantae were freed from tissue (Orton and Orton, 1911) by spraying them with water through 400-μm mesh nylon fabric. Glochidia were suspended in a known volume of water that was subsampled for counting. The water was stirred with a large, rubber-bulb syringe while ten 200-μL samples were removed using a volumetric pipette. Each 200-μL sample was placed as a drop on a plastic Petri dish. The glochidia in each drop were counted and classified as open or closed before and after adding NaCl. Open glochidia that closed after NaCl were classified as “viable.” The sample counts were averaged and used to estimate the concentration and the total number of viable glochidia.

Fishes were infected with glochidia by placing them as a group in a bath containing 2,000 viable glochidia L⁻¹ of SFW. The volume of the suspension was 0.5 L for a single fish. Aeration and stirring with a baster were used to keep the glochidia in suspension. After 15 min, the fishes were immediately transferred by dip net into individual 2.75-L tanks.

**Transformation success**

We monitored transformation success of mussel glochidia on individual fish in a recirculating system (AHAB Aquatic Habitats, Inc., Apopka, Florida) modified for that purpose. Each 2.75-L tank received water continuously from a manifold, and the overflow entered a filter system. Filter cups rested on gutters that returned the water to a sump. The water was conditioned by mechanical, biological, and carbon filtration and received ultraviolet sterilization before returning to the tanks. Temperature was recorded hourly (Optic Stowaway, Onset Computer Corporation, Bourne, Massachusetts) and remained at 22–23°C during the test infections.

We counted the glochidia and juveniles present in the filter cups to monitor the timing of drop-off and the number recovered from each fish. We counted at 1 day after infection and every 2 days thereafter until no more glochidia or juveniles were recovered from any fish for at least 4 days. The contents of each filter cup were rinsed into a finger bowl and transferred to a Bogorov plankton counting tray with a pipette. We used a stereomicroscope at 10.5–40× to count the number of glochidia and juveniles. An individual was classified as a live juvenile if and only if the number of viable glochidia.

**Priming and test infections**

We infected largemouth bass 4–5 times in succession with L. reeveiana glochidia to induce resistance (“priming”). Primed fishes and naïve control fishes (never exposed to glochidia) were then infected with each batch of test glochidia. The controls allowed us to distinguish differences due to priming from differences in the viability of glochidia from individual mussels. For each fish, we determined infection intensity (the total number of glochidia and juveniles recovered from the fish), transformation success (the percent of recovered individuals that were live juveniles), and mean duration of successful parasitism, i.e., days from infection to excystment of live juveniles. Two-tailed t-tests were used to compare the number of recovered juveniles, transformation success, and the mean duration of successful parasitism between primed and control fish. The results are expressed as mean ± 1 SD unless otherwise noted, and differences are considered significant if P < 0.05.

**Antibody tests**

**Serum source:** We used immunoblotting procedures to test whether antiglochidia factors (presumably antibodies) in fish blood serum would recognize glochidia proteins of L. reeveiana and the other test species. Serum was obtained from a separate group of largemouth bass from the same source and of similar size (~13.5 g) that were primed with 3 successive infections of L. reeveiana glochidia. naïve bass that had never been exposed to mussel glochidia were also used for comparison.

**Extraction and preparation of sera from fish:** Fishes were anesthetized with Fringuel (MS-222). The caudal peduncle was severed with scissors and blood was collected from the caudal vein with a pipette. Blood from different fish of the same treatment was pooled in a centrifuge tube and refrigerated (4°C) for 24 hr. Serum was separated from the blood by centrifugation (Labbnet Spectrafuge 16M, Edison, New Jersey) at 3,000 rpm, for 5 min. The serum was decanted from the blood cells and stored in aliquots at −80°C. The samples were later thawed for immunoblotting and 0.05% sodium azide was added to allow temporary storage at 2–4°C.

**Detection of bass antibody production:** Bass antibodies were isolated using Protein A affinity column chromatography. In brief, an ImmunoPure Immobilized Protein A column (Pierce, Rockford, Illinois) was equilibrated with binding buffer (10 mM Tris, pH 7.5). Pooled sera from 5 naïve largemouth bass from a different source (Puster’s Lake and Pond Management, Garner, North Carolina) was diluted with binding buffer and applied to the column for 3 hr. The Protein A column was washed with binding buffer and the bound largemouth bass antibodies were eluted with elution buffer (0.1 M glycine, pH 2.0). Eluted protein fractions were immediately neutralized with 1 M Tris, pH 7.5. The first two 1-mL fractions containing the eluted antibodies were pooled and were pooled for subsequent use. Protein concentrations were determined using Bradford’s assay (Bio-Rad, Hercules, California).

**Chicken dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)** was utilized to determine the purity of the eluted largemouth bass antibodies. Samples of the eluant, containing purified antibodies, and whole largemouth bass serum were mixed with Laemmlie sample buffer (62.5 mM Tris-HCl, pH 6.8, 25% glycerol, 2% SDS, 0.01% bromophenol blue, 5% B-mercaptoethanol; Bio-Rad) and boiled for 4 min. The samples (4 μg of total protein for purified antibodies and 10 μg of total protein for whole serum) were applied to a 4% stacking gel over a 12% resolving gel. Broad range SDS-PAGE molecular weight standards (Bio-Rad) were included. After electrophoresis, the gels were fixed and stained using Coomassie Brilliant Blue to confirm transfer of proteins to membrane. The polyclonal antibodies were produced in BALB-c mice exposed to antibodies from bluegill sunfishes (C. Rogers-Lowery, unpubl. obs.). To determine whether anti-bluegill antibodies would recognize largemouth bass antibodies, samples of purified bass antibodies and whole serum were first electrophoresed as described and then electrotransferred to 0.45-μm nitrocellulose membrane using a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad). Prestained SDS-PAGE molecular weight standards (Bio-Rad) were included on the gels. After blotting, the gels were stained with Coomassie Brilliant Blue to confirm transfer of proteins to membrane. The membranes were blocked overnight with PBS containing 5% nonfat dry milk (PBS-NFDM) and then washed with PBS containing 0.5% Tween-20 (PBS-Tw20). The membranes were initially probed with mouse anti-bluegill antibodies diluted 1:1,000 in PBS containing 3% bovine serum albumin (PBS-BSA) for 1 hr. After thoroughly rinsing in PBS-Tween, membranes were incubated in goat anti-mouse antibodies conjugated to horseradish peroxidase diluted 1:1,000 in PBS-BSA. Antibody binding was visualized using 4-chloro-l-napthol and hydrogen peroxide to produce a colored precipitate.

**Preparation, electrophoresis, and immunoblotting of glochidia extract:** Glochidia were removed from gravid mussels of each species as described above and washed several times in SFW. The glochidia were frozen at −4°C until further use. Glochidia proteins were extracted by thawing and refreezing the samples several times and then homogenizing in 0.01 M Tris buffer containing 0.5% Tween-20 (PBS-Tw20) in a Polytron (St. Louis, Missouri) using a Dounce homogenizer. Approximately 500 μL packed volume of glochidia was homogenized in 1,500 μL total volume. Bradford’s assay (Bio-Rad) was utilized to determine protein concentrations.

**Samples of extracted proteins (each 10 μg total protein) were boiled in Laemmli sample buffer (Bio-Rad) for 4 min, and separated by SDS-PAGE. Electrophoresis was performed over a 12% resolving gel with broad range molecular weight standards (Bio-Rad) included. Gels were stained with Coomassie Brilliant Blue R250.** Immunoblotting techniques were used to determine which glochidia proteins were recognized by bass antibodies.
proteins were recognized by antibodies from primed largemouth bass. Glochidia proteins were separated by SDS-PAGE and electrotransferred to 0.45-µm nitrocellulose membrane. Prestained SDS-PAGE molecular weight standards (Bio-Rad) were included on the gels. Membranes were blocked overnight with PBS-NFDM. After washing with PBS-Tween, the membranes were initially probed with pooled sera collected from naïve (n = 9) or primed (n = 14) largemouth bass diluted 1:50 in PBS-BSA for 1 hr. After thoroughly rinsing in PBS-Tween, membranes were incubated in mouse anti-bluegill antibodies diluted 1:1,000 in PBS-BSA and subsequently incubated in goat anti-mouse antibodies conjugated to horseradish peroxidase. Antibody binding was visualized using 4-chloro-1-naphthol and hydrogen peroxide as the substrate.

RESULTS

Transformation success

During the course of the investigation, 3 different groups of host fish were primed with 4–5 infections of L. reeveiana (Fig. 1). The mean intensity of infection (number of glochidia that attached) for priming infections was 495 ± 149 glochidia per fish. All 3 groups exhibited similar resistance in the last priming infection (1-way ANOVA P = 0.5; mean transformation 32% ± 25). Primed fishes were tested with glochidia of L. reeveiana and 4 other species. The mean body mass of the host fish was 34.6 ± 7.2 g. The mean intensity of the test infections was 655 ± 108 glochidia per fish and did not differ significantly between primed and control fish in any test (2-tailed t-tests).

The control transformation success of the lampshide species (L. reeveiana, L. abrupta, and V. iris) was similar at about 90%, whereas control transformation of the anodontine species was much lower (U. imbecillis 22%, S. undulatus 1%) (Table I; Fig. 3). Transformation success of S. undulatus on primed fish was similarly low compared to that of controls (Table I; Fig. 3). The transformation success of L. reeveiana in the last 2 priming infections and the test infection were statistically similar, i.e., the priming appeared to have reached a plateau. Transformation success of all the other species was significantly reduced on primed hosts and averaged about 56% of control values (Table I; Fig. 3).

The majority of glochidia sloughed from control fishes were lost during the first day after attachment for all mussel species except S. undulatus (Fig. 2). In contrast, primed fishes continued to slough glochidia until juveniles were recovered (Fig. 2). Both primed and control fishes with S. undulatus continued to slough glochidia up until the appearance of transformed juveniles (Fig. 2).

The mean duration of successful parasitism was significantly reduced for L. reeveiana on primed fish, relative to controls (Table I; Fig. 2). The mean duration of successful parasitism was similar on primed and control fish for the rest of the test species (Table I; Fig. 2).

Antibodies

SDS-PAGE of largemouth bass antibodies purified on a Protein A column revealed 2 heavy chain bands with molecular weights of 78–85 kDa and a single light chain band with molecular weight of ~29 kDa. No other bands were present in the gels of purified antibodies. Both heavy chains and light chain were recognized by mouse anti-bluegill IgM polyclonal antiserum. Immunoblot of whole serum from largemouth bass probed with anti-bluegill IgM antiserum revealed a heavy chain, light chain, and a third band with a molecular weight of ~110 kDa, which may represent associated heavy and light chains.

Antibodies produced in primed largemouth bass bound antigens in extracts of glochidia from the L. reeveiana and the other test species (Fig. 4); however, antibodies from naïve largemouth bass did not (data not shown). Control blots probed with largemouth bass serum and goat anti-mouse antibodies (no mouse anti-bluegill antibodies), mouse anti-bluegill and goat anti-mouse antibodies (no largemouth bass serum), goat anti-mouse antibodies only, and substrate only all produced negative results (data not shown).

Antibodies bound several high-molecular-weight proteins for L. reeveiana, an intensely stained band with molecular weight of 132.5 kDa and several less intense bands (120.1, 85.0, and 78.5 kDa). Only the 132.5-kDa band was recognized for L. abrupta. Additionally, 3 low-molecular-weight bands with molecular weights of 44.5, 41.2, and 38.1 kDa were recognized for both L. reeveiana and L. abrupta.

The antibodies bound a 81.7-kDa protein band of V. iris, which is lighter than the major heavy-molecular-weight band (132.5 kDa) of the Lampsilis species. There was no evidence in V. iris of the 132.5-kDa protein of the Lampsilis species. However, very faint bands corresponding to the 81.7-kDa protein of V. iris were present for the Lampsilis species. Additionally, antibodies bound 5 low-molecular-weight bands ranging from 46.0 kDa to 22.0 kDa of V. iris.

No distinct bands were produced by serum from primed fish and extract of S. undulatus or U. imbecillis glochidia. However, diffuse staining was observed in the high-molecular-weight range (~183–109 kDa) for both species.
Glochidia initially attach to the host by clamping to host tissue, mainly the gills and fin margins. Attached glochidia are encysted within hours by migrating cells of the host epithelial and connective tissues. Glochidia on a compatible host species encysted within hours by migrating cells of the host epithelial and connective tissues. Glochidia on a compatible host species may regress, or the cyst may grow and detach from the underlying epithelium, or that glochidia are “sloughed” before transformation is complete. Glochidia may be sloughed live or may be killed within the cysts before sloughing occurs (Arey, 1921, 1932a, 1932b; Fustish and Millemann, 1978; Waller and Mitchell, 1978; Waller and Mitchell, 1989).

Several studies have reported unusual cyst formation by resistant host fish. Largemouth bass resistant to fat mucket (Lampsilis siliquoidea) produced bulky and irregular shaped cysts around glochidia attached to their gills (Reuling, 1919; Arey, 1932a). Bluegills resistant to cysts around glochidia attached to their gills (Reuling, 1919; Arey, 1932a, 1932b; Fustish and Millemann, 1978; Waller and Mitchell, 1989).

In the present study, we observed intact cysts containing glochidia that had been shed from resistant fishes, as well as unencysted glochidia. Sloughing of cysts appears to result from weakening of the attachment to the underlying tissue (Arey, 1932a).

Both live and dead glochidia were recovered from primed and control hosts in our study. We have also observed dead, open glochidia within cysts still attached to the host. Live and dead glochidia have both been recovered in other studies as well (Reuling, 1919; Arey, 1932a; Fustish and Millemann, 1978; Meyers et al., 1980; Bauer, 1987; Bauer and Vogel, 1987; Waller and Mitchell, 1989; Roberts and Barnhart, 1997; O’Connell and Neves, 1999; Rogers and Dimock, 2003). Presumably, elements of the immune system are responsible for death within the cysts (see below).

The normal process of excystment of transformed juveniles is not fully understood. The cyst wall can become thinner late in the parasitism (Arey, 1932a; Waller and Mitchell, 1989). However, it is not known whether movements of the juvenile rupture the cyst or whether the cyst tissue simply regresses or disintegrates. Sloughing might involve an acceleration of processes that cause normal excystment. In the present study, duration of successful parasitism of L. reeveiana juveniles was reduced on primed hosts. This change was not evident for the other test species (Table I). This difference between the priming and test species may suggest that the specific immune mechanisms were of different types for homologous and heterologous glochidia. Another study also found shorter duration of successful parasitism on primed host fish (Rogers and Dimock, 2003). In contrast, Bauer and Vogel (1987) reported prolonged encystment of Margaritifera margaritifera on reinfected brown trout (Salmo trutta) when compared with naïve fishes. Shortened duration of encystment could limit nutritional exchange, which occurs between the host fish and glochidia (Arey, 1932c; Fisher and Dimock, 2002), and might therefore affect nutritional status and perhaps survivorship of juveniles.

Both nonspecific and specific (antibody-mediated) mechanisms are involved in acquired resistance and cross-resistance of teleost fishes to parasites. Priming with interleukin (IL-1), bacterial lipopolysaccharide (LPS), concanavalin A (Con A), and mannan provide rainbow trout (O. mykiss) partial protection against the parasitic ciliate Ichthyophthirius multifiliis (Buchmann et al., 1999). Complement binds and kills the ectoparasitic monogenean, Gyrodactylus derjavini (Buchmann, 1998). Nonspecific cytotoxic cells (NCC) in teleosts are capable of killing certain protists (Evans et al., 1998). Cell-mediated mechanisms are involved in acquired immunity of rainbow trout (O. mykiss) to hemoflagellates, Cryptobia salmositica (Mehta and Woo, 2002).

Acquired immunity to parasites involving antibodies is well documented in fishes (Hines and Spira, 1974; Clark et al., 1987; Cross and Matthews, 1992; Xu et al., 2002). Antibodies to shared antigens of different protist parasites are involved in cross-resistance to these parasites (Ling et al., 1993; Sin et al., 1992; Goven et al., 1980, 1981; Wolf and Markiw, 1982; Dickerson et al., 1984).

Our results indicate that cross-resistance of host fish to different mussel species may be at least partly mediated by antibodies. Antibodies bound to glochidia proteins of 2 of the 3 test species that showed cross-resistance. These proteins were
Figure 2. Time course of recovery of untransformed glochidia and of transformed juveniles from primed and control bass. Bars indicate the mean and standard error of the number of glochidia (black bars) or juveniles (grey bars) recovered per host fish.
similar to those of the priming glochidia. Antibody-mediated cross-resistance is likely to be correlated with phylogenetic relatedness, because distantly related species may have proteins sufficiently different that they are not recognized by antibodies of primed fish. In this study, similar antigens were evidently present among the lampslinine species (members of the Lambsilinae; Ortmann, 1919; Parmalee and Bogan, 1998), but not in the less closely related anodontine species *U. imbecillis* or *S. undulatus* (members of the Anodontinae) (Fig. 4).

Control largemouth bass were poor hosts for *U. imbecillis* and essentially incompatible with *S. undulatus*. No antibody binding with specific proteins of either species was observed (Fig. 4). Despite the lack of antibodies to *U. imbecillis*, significant cross-resistance was observed (Table I). This result indicates that nonspecific mechanisms may be involved in cross-resistance of fish to glochidia of *U. imbecillis*. Eosinophilic granulocytes (nonspecific immune cells) may be involved in the cross-resistance to *U. imbecillis* because these cells congregate around glochidial cysts on immune hosts (Arey, 1932a).

There are few previous studies regarding cross-resistance of host fish to unionid mussel glochidia. Reuling (1919) found that largemouth bass that acquired resistance to *L. silillioides* glochidia were cross-resistant to glochidia of a congener, *L. caridum* and to glochidia of *A. ligamentina*, also a member of the Lambsilinae. Likewise, transformation success of *Lampsilis cardium* was reduced 63% on bass previously exposed to glochidia of *Lampsilis rafinesqueana*, compared with naive fish (Shiver, 2002).

The possibility of cross-resistance of fishes to glochidia and unrelated parasites has not been investigated since the early 1900s. Wilson (1916) found that black sandshell (*Ligumia recta*) glochidia had a lower attachment success on white crappie (*Pomoxis annularis*) infected with parasitic copepods (*Ergasilus caeruleus*) than on uninfected fishes. Conversely, copepodid larvae had lower attachment to gills of *P. annularis* that had *L. recta* glochidia attached to them. Similar results were found using short-nosed gar (*Lepisosteus platostomus*), *Lernaeac* sp. copepods, and unspecified mussel glochidia (Wilson, 1917). The mechanism of interference is not known and deserves further attention.

In eastern North America, mussel habitats generally support large numbers of species living in close proximity (Vaughn, 1997). In many cases different mussel species may utilize the same species of host fish (Watters, 1994; Haag and Warren, 1997). Given that fishes can develop cross-resistance to glochidia, interspecific as well as intraspecific competition for naive hosts might occur. There is evidence that fishes acquire resistance to glochidia in nature (Young and Williams, 1984a; Bauer, 1987; Watters and O’Dee, 1996; Hastie and Young, 2001). Competition for hosts would be favored by prolonged retention by the host of acquired resistance. We have observed that largemouth bass retain measurable acquired resistance for at least 11 mo (data not shown).

Cross-resistance of fishes to mussel glochidia may have practical implications for efforts to propagate endangered mussel species. It appears that propagating either the same or different mussel species consecutively on the same host fish would reduce transformation success. Another question, which has apparently not been investigated, is whether the immune response of the host might affect the viability of those juveniles that do successfully transform. The shortened duration of successful parasitism observed in primed fishes could affect the nutritional status of the juveniles. Study is also needed to establish whether infection intensity affects transformation success, duration of parasitism, or juvenile viability. Hypothetically, higher infection intensity could result in a stronger immune response, perhaps affecting the success of glochidia even during the first infection of a host. Establishing the optimum intensity of infection might improve the efficiency of captive propagation.

**Figure 3. Effect of priming with *L. reeveiana* on the subsequent transformation success of *L. reeveiana* and other test species on largemouth bass. Bars indicate mean ± standard error. Black bars represent transformation success on primed hosts that previously received 4–5 *L. reeveiana* infections. Gray bars represent success on control (naïve) hosts.**
ACKNOWLEDGMENTS

Funding was provided by the United States Fish & Wildlife Service, Missouri Department of Conservation, Southwest Missouri State University, and Wake Forest University. We thank Dan Beckman, Elizabeth Bowen, Raymond Kuhn, John Heywood, Janice Horton, Janice Moll, Richard Myers, Joe Newton, and Clifford Starliper for their advice and assistance throughout this study. We greatly appreciate the assistance of Robert Brown, Christian Hutson, and Bri Kaiser in the lab and field. We would also like to thank Andy Cornforth and Dennis Whelan at Chesapeake State Fish Hatchery for providing fish for this study.

LITERATURE CITED


