- Cost Minimization
 - The cost function
 - Costs come from profit maximization. How?
 - 1. Problem is to minimize costs = wL + rK subject to Y = f(L,K).
 - Graphically
 - Use equation 1 above, which implies must use isoquants.
 - Define isocost curve = combinations of L and K such that costs are constant.
 - What are the intercepts on isocost curve?
 - What is the slope of the isocost curve?
 - How many isocost curves are there?
 - Minimizing Costs graphically and mathematically
 - Again, requires a tangency between two curves => slopes are equal.
 - Or $MP_L/MP_K = w/r$ or $MP_L/w = MP_K/r do$ these look familiar?
 - Derive the conditional factor demand curves or the derived factor demand curves from this requirement.
 - $K^* = f(Y^*, w, r); L^* = f(Y^*, w, r).$
 - How do K^{*} and L^{*} change as Y^{*}, w, and r change?
 - Revealed Cost Minimization
 - What's that?
 - Definition/equations WACM Weak Axiom of Cost Minimization
 - Implications of WACM with respect to:
 - Firm Demand for the inputs
 - Returns to Scale and Cost Minimization
 - Increasing returns to scale => what happens to LRAC as output increases? => Economies of Scale
 - Decreasing returns to scale => what happens to LRAC as output increases? => Diseconomies of Scale
 - Constant returns to scale => what happens to LRAC as output increases?
 - Graphically
 - Short-run Cost Minimization
 - Assume L is variable and K fixed $=> K^* =$ fixed K; L^{*} = f(fixed K, Y^{*}, L)
 - Note that cost curves in short-run are also defined with K fixed
- Cost Curves
 - Short-run Cost Curves
 - Define total costs: $C(Y) = C_v(Y) + F$ or TC = TVC + TFC.
 - What do the cost curves look like graphically?

- Define average costs: $AC(Y) = C_v(Y)/Y$; $AVC(Y)=C_v(Y)/Y$; AFC(Y) = F/Y or AC(Y) = AVC(Y) + AFC(Y).
 - What do the cost curves look like graphically?
- Define marginal costs: $MC(Y) = \Delta C(Y)/\Delta Y = \Delta C_v(Y)/\Delta Y$. Why?
- What is the relationship between the cost curves graphically and mathematically?
- Long-run Cost Curves
 - Important points
 - 1. All inputs are variable => costs associated with different plant sizes or scale of operations.
 - 2. Once K is chosen in the long-run => K becomes fixed in the short-run => K is <u>not</u> chosen optimally in the short-run.
 - What is the relationship between short-run AC curves and long-run AC curves?
 - You should know this graphically and mathematically.
 - For a given $Y \Rightarrow if K$ is chosen optimally in s-r and l-r $\Rightarrow AC_{sr} = AC_{lr}$
 - However, if in s-r move away from this Y => K is not chosen optimally and $=> AC_{sr} > AC_{lr} => LRAC$ is the lower envelope of all SRAC curves.
 - What does this look like graphically?