- The Market Environment
 - Define
 - Types of Markets
 - For oligopoly markets?
 - Why must oligopoly firms react to competitors but in other markets firms do not care about competitors behavior?
- Traditional Oligopoly models
 - Assume a duopoly (what's that?)
 - Four types of models that we will consider (lots more possible)
 - 1. Price leader/follower
 - 2. Quantity leader/follower
 - 3. Collusion
 - 4. No followers but simultaneous decisions
 - First define
 - Cournot model = each firm chooses output given belief about output of competing firm; equilibrium occurs where each firm's expectations about competitors behavior is met.
 - Stackelberg model = Q leader/follower, with leader = dominant (smart) firm and follower = stupid firm (why?)
 - What is a reaction function?
 - Definition
 - Graphically?
 - In which direction does profit go?
 - Make sure you know how reaction functions work.
 - Stackelberg model
 - Sequential Game
 - Stupid (follower) firm always on reaction function.
 - Dominant (smart) firm maximizes profit given that follower always on reaction function => leads to what conclusion?
 - Make sure you know the equilibrium concept and result (i.e., where the firms end up graphically). Who ends up producing the monopoly output?
 - Is this a Nash equilibrium?
 - Cournot Model
 - Simultaneous Game
 - Both parties always on their reaction function
 - Make sure you know the equilibrium concept and result (i.e., where the firms end up graphically).
 - How does Cournot equilibrium compare to Stackelberg?
 - If at Stackelberg equilibrium initially how do they get to Cournot equilibrium?

- Is this a Nash equilibrium?
- What is a Stakelburg bluff model?
- Collusion
 - Cooperative game
 - Total output is monopoly output
 - Be able to show graphically why collusion leads to incentives to cheat.
- Bertrand Model
 - Price leader/follower, with leader = dominant (smart) firm and follower = stupid firm (why?)
 - Assuming that P=MC => Bertrand leads to zero profits and price equal to the competitive price. Make sure you understand the logic for why this is true.
- Game theory and Oligopoly
 - What is game theory?
 - Definitions: Players, strategies, payoffs, payoff matrix, cooperative solution, non-cooperative solution.
 - Know how to set up a game given the initial conditions
 - Equilibrium concepts in game theory
 - Dominant strategy game = both parties always choose the same regardless of other party.
 - If no dominant strategy => what is the equilibrium concept?
 - Nash equilibrium = both chooses one strategy assuming the other party makes the best choice possible.
 - Prisoner's Dilemma
 - Each party's dominant strategy is to confess
 - Nash Equilibrium has both parties confessing => both worse off than if neither confessed.
 - Conundrum of Prisoner's dilemma is that the cooperative solution is better but not chosen because (a) don't trust the other party and (b) dominant strategy given payoffs is to confess.
 - What is the solution to the dilemma?
 - Mixed vs. Pure Strategy
 - Definition of both strategies did pure strategy games previously
 - Do pure strategy games always have a Nash equilibrium?
 - What is a Nash equilibrium with mixed strategies? Make sure you can solve for mixed strategy equilibriums given a game.
 - Prisoner's Dilemma in a Cartel (Collusion)
 - How is the game set up choices = cheat or don't cheat.
 - Same basic structure and solutions.
 - Repeated Games
 - What is a tit for tat strategy?

- How does repeating the game change the results, for example, with cartels' prisoner's dilemma game?
- Sequential Games
 - Previously had done simultaneous games. How do these differ from sequential games?
 - Does the order of decisions affect the outcome? How?
 - Make sure that you can set up a sequential game and find the equilibrium.