Review Notes - The Slutsky Equation

- Definitions
- Income and Substitution Effects
- Do Demand curves always have a negative slope?
- No - what's a giffen good?
- How likely are giffen goods?
- Substitution effect of a price change - as price increases then Q_{D} decreases and the reverse.
- Income effect of a price change
- As the price decreases, then like $\$ \$$ increases, so change consumption of the good
- If the good is normal then what happens?
- If the good is inferior then what happens?
- You should know how to show the substitution and income effects graphically in each of four situations.
- Slutsky Decompositions
- Price Increases
- Price Decreases
- Hicks Decompositions
- Price Increases
- Price Decreases
- The Slutsky Equation
- Start with $\Delta \mathrm{M}=\Delta \mathrm{P}_{1} \mathrm{X}_{1}$
- Assumes that P_{1} is the price that changes.
- What does the equation mean?
- The substitution effect:
- $\Delta \mathrm{X}_{1}{ }^{\mathrm{S}}=\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}^{1}, \mathrm{P}_{2}\right)-\mathrm{X}_{1}\left(\mathrm{P}_{1}, \mathrm{M}, \mathrm{P}_{2}\right)$
- What does this mean graphically?
- $\mathrm{X}_{1}\left(\mathrm{P}_{1}, \mathrm{M}, \mathrm{P}_{2}\right)=$ original optimization point
- $\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}^{1}, \mathrm{P}_{2}\right)=$ Optimum with new prices and taking away just enough money to either make $\mathrm{X}_{1}\left(\mathrm{P}_{1}, \mathrm{M}, \mathrm{P}_{2}\right)$ possible (Slutsky) or to keep utility constant (Hicks).
- How is this done using the demand function itself?
- Example from class
- What is the sign of the substitution effect?
- The income effect:
- $\Delta \mathrm{X}_{1}{ }^{\mathrm{N}}=\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}, \mathrm{P}_{2}\right)-\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}^{1}, \mathrm{P}_{2}\right)$
- What does this mean graphically?
- $\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}, \mathrm{P}_{2}\right)=$ optimization point after P_{1} changes.
- $\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}^{1}, \mathrm{P}_{2}\right)=$ Optimum with new prices and taking away just enough money to either make $\mathrm{X}_{1}\left(\mathrm{P}_{1}, \mathrm{M}, \mathrm{P}_{2}\right)$ possible (Slutsky) or to keep utility constant (Hicks).
- How is this done using the demand function itself?
- How is this done using the demand function itself?
- Example from class
- What is the sign of the income effect?
- The Slutsky Equation
- $\mathrm{X}_{1}\left(\mathrm{P}_{1}{ }^{1}, \mathrm{M}, \mathrm{P}_{2}\right)-\mathrm{X}_{1}\left(\mathrm{P}_{1}, \mathrm{M}, \mathrm{P}_{2}\right)=\Delta \mathrm{X}_{1}$
- $\Delta \mathrm{X}_{1}=\Delta \mathrm{X}_{1}{ }^{\mathrm{S}}+\Delta \mathrm{X}_{1}{ }^{\mathrm{N}}$
- What is the sign of the Slutsky equation income and substitution effects?
- If you do rates of changes $=>$
- $\Delta \mathrm{X}_{1}^{\mathrm{S}} / \Delta \mathrm{P}_{1}$ is always negative - why?
- What is this equations' interpretation?
- is always negative - why?
- $\Delta \mathrm{X}_{1}{ }^{\mathrm{M}} / \Delta \mathrm{P}_{1}=\left(\Delta \mathrm{X}_{1}{ }^{\mathrm{M}} / \Delta \mathrm{M}\right) \mathrm{X}_{1}$
- What is this equations' interpretation?
- Note that $\Delta \mathrm{X}_{1}{ }^{\mathrm{M}}=-\Delta \mathrm{X}_{1}{ }^{\mathrm{N}}$
- When is this negative?
- When is this positive?
- The Law of Demand
- What is the ECO 165 law of demand?
- Is this true?
- What is the actual law of demand now that we know income effects can be negative?
- Examples of Substitution and Income Effects
- Should Know Definitions for Three Demand Curves
- What is the regular Demand Curve?
- What is the Slutsky Demand Curve?
- What is the Hicks or Compensated Demand Curve?
- What is the law of demand for each type of curve - that is, is this demand curve always downward sloping?

