## Review Notes - Consumer Surplus

- Consumer Surplus
- How do we derive a demand curve graphically from indifference curve analysis?
- Note that here utility yields a demand curve
- But in real world actually observe demand not utility
- => How do we derive utility from demand?
- One answer = consumer surplus.
- Consumer surplus for a discrete good
- What is a discrete good?
- What is a reservation price?
- What does D for a discrete good look like?
- Why does reservation price (Demand) equal marginal utility?
- Only strictly true for quasi-linear preferences
- What is total value or the gross surplus for the discrete good equal to?

$$
\circ \mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}+\ldots+\mathrm{r}_{\mathrm{n}}
$$

- Consumer Surplus or Net Consumer Surplus
- Subtracts the cost per unit - the price - from the gross surplus
$\circ=\left(r_{1}-p\right)+\left(r_{2}-p\right)+\left(r_{3}-p\right)+\ldots+\left(r_{n}-p\right)=$ Gross Surplus $-n p$
- What does this look like graphically?
- Quasi-linear Preferences - what do you need to know about them?
- What are they? $\mathrm{U}(\mathrm{x}, \mathrm{y})=\mathrm{V}(\mathrm{x})+$ by
- What impact do they have on reservation prices and demand?
- In general reservation prices for one good depend upon consumption of the other good. But not true for quasi-linear preferences.
- D exactly measures marginal utility for QL preferences.
- Area under D measures total utility for QL preferences.
- For other types of utility $\mathrm{D} \sim \mathrm{MU}$ and area under $\mathrm{D} \sim \mathrm{TU}$.
- Consumer surplus for a continuous good
- What is a continuous good?
- Is D still $=\mathrm{MU}$ ?
- Is area under $\mathrm{D}=\mathrm{TU}$ ? (How do you measure area?)
- Is Consumer Surplus still TU - pn?
- How do we interpret the change in consumer surplus when price changes?
- Compensating and Equivalent Variation
- How are these similar/different to Consumer Surplus?
- Still a method of calculating the change in value resulting from a change in price of a good.
- Uses utility rather than D to measure $=>$ arguably better measure although more difficult to get utility than D.
- Assumptions/Definitions
- We know the person's utility/preferences.
- Only 2 goods; one whose price changes interested in; one whose price $=\$ 1=>$ composite good (money left after buying first good => available to buy all other goods). Why do we make this assumption?
- The price of the first good $\left(\mathrm{P}_{1}\right)$ changes $=>$ trying to measure how much value the consumer gets from this price change.
- Be able to show optimal consumption both before and after the price changes on an indifference curve graph. Should have two prices for good $1 ; \mathrm{P}_{1}=$ old price and $\mathrm{P}_{1}{ }^{2}$ $=$ new price reflected by two budget lines, $\mathrm{BL}_{1}$ (old) and $\mathrm{BL}_{2}$ (new) along with two indifference curves, $\mathrm{I}_{1}$ (old) and $\mathrm{I}_{2}$ (new).
- Compensating Variation $=$ the change in income needed to restore the consumer to his original indifference curve after a change in price for the first good. (New price, $P_{1}{ }^{2}$, new income, old indifference curve, $\mathrm{I}_{1}$ )
- Equivalent Variation = the change in income needed before the price of the first good changes to move the consumer onto the new indifference curve. (Old price, $\mathrm{P}_{1}$, new income, new indifference curve, $\mathrm{I}_{2}$ )
- CV and EV graphically
- Should know how to find both graphically for two different situations
- $P_{1}$ increases
- $P_{1}$ decreases
- How are these related to Hicks decompositions?
- Will you stay up late nights thinking about EV and CV?
- Net Producer Surplus
- Is net producer surplus = profit?
- Similar concept to consumer surplus $=>$ net producer surplus $=$ total value - total $\operatorname{cost}=$ the difference between the price the firm actually gets and the price the firm would take (given by the supply curve).
- What does it look like graphically?
- What does a change in net producer surplus look like as price of the good changes?
- Net Surplus $=$ Net Consumer Surplus + Net Producer Surplus
- How is this related to allocative efficiency?
- Changes in Net Surplus = Deadweight Losses
- Examples

