- Consumer Surplus
 - How do we derive a demand curve graphically from indifference curve analysis?
 - Note that here utility yields a demand curve
 - But in real world actually observe demand not utility
 - $\circ \Rightarrow$ How do we derive utility from demand?
 - \circ One answer = consumer surplus.
 - Consumer surplus for a discrete good
 - What is a discrete good?
 - What is a reservation price?
 - What does D for a discrete good look like?
 - Why does reservation price (Demand) equal marginal utility?
 - Only strictly true for quasi-linear preferences
 - What is total value or the gross surplus for the discrete good equal to?
 - $\circ \quad r_1+r_2+r_3+\ldots+r_n$
 - Consumer Surplus or Net Consumer Surplus
 - Subtracts the cost per unit the price from the gross surplus
 - $\circ = (r_1 p) + (r_2 p) + (r_3 p) + ... + (r_n p) = Gross Surplus np$
 - What does this look like graphically?
 - Quasi-linear Preferences what do you need to know about them?
 - What are they? U(x,y) = V(x) + by
 - What impact do they have on reservation prices and demand?
 - In general reservation prices for one good depend upon consumption of the other good. But not true for quasi-linear preferences.
 - D exactly measures marginal utility for QL preferences.
 - Area under D measures total utility for QL preferences.
 - \circ For other types of utility D ~ MU and area under D ~ TU.
 - Consumer surplus for a continuous good
 - What is a continuous good?
 - Is D still = MU?
 - Is area under D = TU? (How do you measure area?)
 - Is Consumer Surplus still TU pn?
 - How do we interpret the change in consumer surplus when price changes?
- Compensating and Equivalent Variation
 - How are these similar/different to Consumer Surplus?
 - Still a method of calculating the change in value resulting from a change in price of a good.
 - Uses utility rather than D to measure => arguably better measure although more difficult to get utility than D.

- Assumptions/Definitions
 - We know the person's utility/preferences.
 - Only 2 goods; one whose price changes interested in; one whose price = \$1 => composite good (money left after buying first good => available to buy all other goods). Why do we make this assumption?
 - The price of the first good (P₁) changes => trying to measure how much value the consumer gets from this price change.
 - Be able to show optimal consumption both before and after the price changes on an indifference curve graph. Should have two prices for good 1; $P_1 = old price and P_1^2$ = new price reflected by two budget lines, BL₁ (old) and BL₂ (new) along with two indifference curves, I₁ (old) and I₂ (new).
 - Compensating Variation = the change in income needed to restore the consumer to his original indifference curve after a change in price for the first good. (New price, P_1^2 , new income, old indifference curve, I_1)
 - Equivalent Variation = the change in income needed <u>before</u> the price of the first good changes to move the consumer onto the new indifference curve. (Old price, P_1 , new income, new indifference curve, I_2)
- CV and EV graphically
 - Should know how to find both graphically for two different situations
 - \circ P₁ increases
 - \circ P₁ decreases
 - How are these related to Hicks decompositions?
 - Will you stay up late nights thinking about EV and CV?
- Net Producer Surplus
 - Is net producer surplus = profit?
 - Similar concept to consumer surplus => net producer surplus = total value total cost = the difference between the price the firm actually gets and the price the firm would take (given by the supply curve).
 - What does it look like graphically?
 - What does a change in net producer surplus look like as price of the good changes?
- Net Surplus = Net Consumer Surplus + Net Producer Surplus
 - How is this related to allocative efficiency?
 - Changes in Net Surplus = Deadweight Losses
 - Examples